
J Glob Optim (2007) 38:333–365
DOI 10.1007/s10898-006-9068-2

O R I G I NA L PA P E R

An analytically derived cooling schedule for simulated
annealing

Yanfang Shen · Seksan Kiatsupaibul ·
Zelda B. Zabinsky · Robert L. Smith

Received: 21 February 2006 / Accepted: 1 July 2006 / Published online: 4 October 2006
© Springer Science+Business Media B.V. 2006

Abstract We present an analytically derived cooling schedule for a simulated anneal-
ing algorithm applicable to both continuous and discrete global optimization prob-
lems. An adaptive search algorithm is used to model an idealized version of simulated
annealing which is viewed as consisting of a series of Boltzmann distributed sample
points. Our choice of cooling schedule ensures linearity in the expected number of
sample points needed to become arbitrarily close to a global optimum.

Keywords Simulated annealing · Cooling schedule · Adaptive search

1 Introduction

Simulated annealing is a stochastic method for searching for global optima of dis-
crete and continuous optimization problems [1, 7, 8, 11]. The origination of simulated
annealing is from an analogy with the physical annealing process of finding low energy
states of a solid in a heat bath [14]. The algorithm avoids getting trapped in local optima
by allowing moves that may lead to a deterioration in objective function value. The
probability of accepting a worse candidate point is controlled by a time-dependent
temperature parameter, which descends asymptotically to zero in the course of the

Y. Shen
Industrial Engineering Program, University of Washington, Seattle, WA 98195-2650, USA

S. Kiatsupaibul
Department of Statistics, Chulalongkorn University, Bangkok 10330, Thailand

Z. B. Zabinsky (B)
Industrial Engineering Program, University of Washington, Seattle, WA 98195-2650, USA
e-mail: zelda@u.washinton.edu

R. L. Smith
Department of Industrial and Operations Engineering, The University of Michigan,
Ann Arbor, MI 48109, USA

334 J Glob Optim (2007) 38:333–365

optimization process. From both practical and theoretical points of view, the cooling
schedule for the temperature plays an important role in simulated annealing. Various
choices for cooling schedule have been proposed and computationally tested in the
literature [3, 6, 9]. Moreover, sufficient conditions for many of these cooling schedules
have been established that guarantee convergence to the global optimum [4, 12, 13,
18]. Most conditions simply require the cooling not be too rapid but are otherwise
not specific in specifying what rates might lead to the fastest convergence to optimal.
Indeed, for globally reaching Markov chain samplers like Hit-and-Run [18, 19], any
cooling schedule converging to zero at any rate guarantees convergence to optimal
in the limit. In this paper, we propose an analytic cooling schedule which leads to a
linear in dimension number of sample points.

2 Adaptive search for continuous and discrete problems

In this paper, we derive an adaptive cooling schedule for simulated annealing applica-
ble to both continuous and discrete optimization problems. The cooling schedule strat-
egies are developed based on the adaptive search algorithm introduced by Romeijn
and Smith [19]. Adaptive search (AS) is an ideal algorithm that models simulated
annealing by assuming points can be sampled according to a sequence of Boltzmann
distributions. An attractive property of AS is that the expected number of record val-
ues generated by the algorithm increase at most linearly in dimension of the problem
for a large class of continuous/discrete optimization problems [19, 23]. In addition, a
natural choice of cooling schedule for AS was derived in [19], which maintained the
linearity result on the expected number of sample points required for AS for solving
a class of convex problems with a quadratic type of objective function. In this paper,
we develop a cooling schedule for AS applied to the more general class of Lipschitz
objective functions over both continuous and discrete domains. In light of the diffi-
culty of generating Boltzmann distributed points with low temperature values, the
cooling schedule attempts to keep the temperature of each AS iteration as high as
possible while maintaining a linear complexity in expected number of sample points.

We consider two global optimization programs, one with a continuous domain and
one with a discrete domain. The continuous problem is

(P1) max f (x)

s.t. x ∈ S,

where S is a convex, compact, and full dimensional subset of �n, and the objective
function f is a real-valued continuous function defined over S. Let ρ denote the
diameter of S. Let x∗ be an optimal solution of (P1) and f ∗ be the global optimum,
f ∗ = maxx∈S f (x). We assume that f satisfies the Lipschitz condition with Lipschitz
constant K, i.e.,

|f (x) − f (y)| ≤ K‖x − y‖, ∀x, y ∈ S, (1)

where ‖ · ‖ is the Euclidean norm on �n.
The discrete problem is

(P2) max f̃ (x̃)

s.t. x̃ ∈ S̃,

J Glob Optim (2007) 38:333–365 335

where S̃ is the collection of integer points contained in an n-dimensional hyperrectangle
[a1, b1] × [a2, b2] × · · · × [an, bn], where ai ≤ bi and ai, bi ∈ Z for i = 1, . . . , n. Let ρ̃

denote the largest width of the hyperrectangle, i.e., ρ̃ = maxi=1,...,n(bi − ai). Let x̃∗ be
an optimal solution of (P2) and f̃ ∗ be the global optimum, f̃ ∗ = maxx̃∈S̃ f̃ (x̃). Notice
that a condition analogous to the Lipschitz condition is satisfied for (P2), i.e.

|f̃ (x̃) − f̃ (ỹ)| ≤ K̃ max
i=1,...,n

(|x̃i − ỹi|), ∀x̃, ỹ ∈ S̃, (2)

where K̃ is a positive constant and x̃ = (x̃1, . . . , x̃n), ỹ = (ỹ1, . . . , ỹn). Note that because
S̃ is a finite set, a positive constant K̃ exists, with K̃ ≤ f̃ ∗ − f̃∗, where f̃∗ = minx̃∈S̃ f̃ (x̃).

We center our attention on adaptive search, introduced in [19], to solve (P1) and
(P2). In [19], adaptive search models simulated annealing by assuming points can be
exactly sampled according to a sequence of Boltzmann distributions. An attractive
property of adaptive search, as shown by Romeijn and Smith in 1994, is that the
expected number of record values required for adaptive search to solve (P1) over the
continuous space S grows linearly in the dimension of the problem [19, Theorem 1].
In 2003, Shen et al. [20] (see also [21, 23]) extended the linearity result to a finite
domain within an n-dimensional lattice.

While this is an encouraging result, neither Romeijn and Smith [19] nor Shen
et al. [20] offer algorithms for computing the cooling schedule whose existence guar-
antees the linearity result. In this paper, we derive formulas for an analytic cooling
schedule guaranteed to result in at most a linear number of temperature changes.
There is still a gap between theory and practice in that adaptive search still assumes
that points can be sampled according to a Boltzmann distribution of arbitrary param-
eter T. However, the analytical linearity result provides motivation to develop algo-
rithms that can approximate the theoretical performance. If a procedure were to
be discovered to sample efficiently from the corresponding Boltzmann distributions,
adaptive search would thereby be efficiently implementable through use of this cool-
ing schedule.

2.1 The adaptive search algorithm

Adaptive search [19] is motivated by the idea of approximating the global optimum
by generating points according to a sequence of Boltzmann distributions parame-
terized by decreasing temperatures (see, e.g. [15, 17]). As the temperature param-
eter decreases to zero, the Boltzmann distribution concentrates more around the
global optimum. To be precise, let πf ,T be the Boltzmann distribution corresponding
to (P1),

πf ,T(Si) =
∫

Si
ef (x)/T dx

∫
S ef (w)/T dw

and let π̃f̃ ,T̃ be the Boltzmann distribution corresponding to (P2),

π̃f̃ ,T̃(S̃i) =
∑

x̃∈S̃i
ef̃ (x̃)/T̃

∑
w̃∈S̃ ef̃ (w̃)/T̃

,

where Si ⊆ S, S̃i ⊆ S̃, and T and T̃ are referred to as the temperature parameters.
The adaptive search algorithm [19] is stated below.

336 J Glob Optim (2007) 38:333–365

Adaptive Search (AS)

Step 0 Set k = 0. Generate X0 uniformly over the feasible region. Set Y0 = f (X0)

and T0 = τ(Y0), where τ is a nonnegative real valued nonincreasing function.
Step 1 Generate Z from the Boltzmann distribution with parameter Tk over the

feasible region. If f (Z) > Yk, set Xk+1 = Z. Otherwise, repeat Step 1.
Step 2 Set Yk+1 = f (Xk+1) and set the temperature parameter Tk+1 = τ(Yk+1). If

stopping criteria has not been met, increment k and return to Step 1.

Intermediate points Z generated in step 1 are called trial points or sample points.
The sequence (Xk; k ≥ 0) is a sequence of record points. Defined in this way, the
last sampled point generated by step 1 in each iteration is then a record point (i.e.,
an improving point). Lastly, the function τ generating the sequence of temperature
parameters (Tk; k ≥ 0) is called the cooling schedule.

The expected number of record points of adaptive search has been shown to
increase linearly in the dimension of the problem for both continuous (P1) and dis-
crete (P2) problems [19, 23]. However, the number of sample points needed to obtain
a record value needs to be considered to reflect the overall performance of the algo-
rithm. To maintain linear performance, we would like to manipulate the cooling
schedule to maintain a constant (1 − α) probability of achieving an improving point.
This leads to our choice of cooling schedule.

2.2 Characterization of the adaptive search cooling schedule

The following principle for a cooling schedule characterizes AS.

Choose the temperature for the next iteration of adaptive search so that the
probability of generating an improving point under the Boltzmann distribution
is at least 1 − α.

Defining the cooling schedule in this way, the expected number of sample points
in each iteration will be 1/(1 − α) where 0 ≤ α < 1, independent of the dimension n
of the problem. As a result, not only the expected number of record points, but also
the expected number of sample points of the adaptive search algorithm will grow lin-
early in the dimension of the problem. (The task of generating Boltzmann distributed
sample points remains of course a challenging task that we will not address here.)

To construct the cooling schedule, we first define the improving region correspond-
ing to the continuous problem (P1) as follows

Sf (Xk) = {x ∈ S : f (x) > f (Xk)},
where Xk is the record point sampled at the kth iteration of AS. And similarly, let X̃k
be the record point on the kth iteration of AS for solving the discrete problem (P2),
and define the corresponding improving region as

S̃f̃ (X̃k)
= {x̃ ∈ S̃ : f̃ (x̃) > f̃ (X̃k)}.

For (P1) with 0 ≤ α < 1, we want to derive the temperature Tk such that the
probability of generating an improving point according to the Boltzmann distribution
satisfies the following cooling schedule condition

πf ,Tk(Sf (Xk)) =
∫

Sf (Xk)
ef (x)/Tk dx

∫
S ef (x)/Tk dx

≥ 1 − α (3)

J Glob Optim (2007) 38:333–365 337

and similarly for (P2), find the temperature T̃k such that

π̃f̃ ,T̃k
(S̃f̃ (X̃k)

) =
∑

x̃∈S̃f̃ (X̃k)
ef̃ (x̃)/T̃k

∑
x̃∈S̃ ef̃ (x̃)/T̃k

≥ 1 − α. (4)

Note that a temperature close to zero will satisfy the required probability, as in Eqs.
3 and 4. However, for a practical algorithm, in general the lower the temperature, the
higher the difficulty to achieve the Boltzmann distribution. In order to be tractable
computationally, we want to find the highest temperature possible that satisfies the
required probability. We also want the cooling schedule to be applicable to a broad
family of optimization problems since in general little is known about the problem
before us. This leads to our worst case approach discussed in the next section.

3 An analytical cooling schedule

In this section, we develop cooling schedules for (P1) and (P2) that satisfy inequali-
ties (3) and (4), respectively, based on a worst case analysis.

3.1 Worst case functions

Given the current record value, the temperature consistent with the principle of an
adaptive search cooling schedule will be calculated based upon the worst case function
among those consistent with the Lipschitz constants K and K̃, respectively.

The worst case functions for the continuous and discrete problems are constructed
as follows.

Definition 1 Given the record point Xk generated at the kth iteration of AS for
solving (P1), define a function h(x) over �n as follows

h(x) = max
{
f (Xk),

(
f ∗ − K||x − x∗||)}

for all x ∈ �n.

Definition 2 Given the record point X̃k generated at the kth iteration of AS for
solving (P2), define a function h̃ over Zn as follows

h̃(x̃) = max

{

f̃ (X̃k),
(

f̃ ∗ − K̃ max
i=1,...,n

(|x̃i − x̃∗
i |)

)}

for all x̃ ∈ Zn.

An illustration of h(x) and h̃(x̃) in two dimensions is given in Fig. 1.
Let Sh(Xk) and S̃h̃(X̃k)

denote the improving regions of the h function and h̃ function,
respectively, i.e.,

Sh(Xk) = {x ∈ S : h(x) > h(Xk)},
S̃h̃(X̃k)

= {x̃ ∈ S̃ : h̃(x̃) > h̃(X̃k)}.

The following theorem states the functions h and h̃ are worse than the original func-
tions f and f̃ , respectively, in the sense that the probability of sampling an improving

338 J Glob Optim (2007) 38:333–365

Fig. 1 Worst case functions in two dimensions

point with the worst case function is smaller than the probability of sampling an
improving point with the original function.

Theorem 1 Let Xk and X̃k be the record points at the kth iteration of AS for solv-
ing (P1) and (P2), respectively. Under the same temperature and feasible region, the
probability of sampling a point on the improving region according to the Boltzmann
distribution corresponding to the worst function is less than that of sampling a point
on the improving region according to the Boltzmann distribution with respect to the
original functions f (x) and f̃ (x̃), i.e.,

πf ,Tk(Sf (Xk)) ≥ πh,Tk(Sh(Xk)) and (5)

π̃f̃ ,T̃k
(S̃f̃ (X̃k)

) ≥ π̃h̃,T̃k
(S̃h̃(X̃k)

). (6)

Proof We only show the proof for the continuous case. The proof for the discrete case
is similar. The proof of the theorem relies on Lemma 4, which appears in Appendix
A, and states that, for a, b ∈ �, b > a, b > 0, if c ≥ 0 then a+c

b+c ≥ a
b .

Let x be any point in the region Sh(Xk), where Sh(Xk) = {x ∈ S : h(x) > h(Xk)}. Then
f (x) ≥ h(x), where h(x) = f ∗ − K||x − x∗||. Because the original objective function
f (x) is a Lipschitz function with Lipschitz constant K, we have

f ∗ − f (x) ≤ K||x − x∗||,
which is equivalent to

f (x) ≥ f ∗ − K||x − x∗||.
By the definition of h(x) and the Lipschitz condition, for any x ∈ Sh(Xk), one has
f (x) ≥ h(x), which implies that

Sh(Xk) ⊆ Sf (Xk).

J Glob Optim (2007) 38:333–365 339

Next, by applying Lemma 4 and using the facts that Sh(Xk) ⊆ Sf (Xk) and f (x) ≥ h(x)

for any x ∈ Sh(Xk), we show that πf ,Tk(Sf (Xk)) ≥ πh,Tk(Sh(Xk)).
According to the definition of the Boltzmann distribution, we have,

πf ,Tk(Sf (Xk)) =
∫

Sf (Xk)
ef (x)/Tk dx

∫
S ef (x)/Tk dx

=
∫

Sf (Xk)
ef (x)/Tk dx

∫
S\Sf (Xk)

ef (x)/Tk dx + ∫
Sf (Xk)

ef (x)/Tk dx

and applying the fact that Sh(Xk) ⊆ Sf (Xk), we have,

=
∫

Sh(Xk)
ef (x)/Tk dx + ∫

Sf (Xk)\Sh(Xk)
ef (x)/Tk dx

∫
S\Sf (Xk)

ef (x)/Tk dx + ∫
Sh(Xk)

ef (x)/Tk dx + ∫
Sf (Xk)\Sh(Xk)

ef (x)/Tk dx
.

We apply Lemma 4, (a + c)/(b + c) ≥ a/b for b > a > 0 and c > 0, and use

a =
∫

Sh(Xk)

ef (x)/Tk dx +
∫

Sf (Xk)\Sh(Xk)

ef (Xk)/Tk dx

b =
∫

S\Sf (Xk)

ef (x)/Tk dx +
∫

Sh(Xk)

ef (x)/Tk dx +
∫

Sf (Xk)\Sh(Xk)

ef (Xk)/Tk dx

c =
∫

Sf (Xk)\Sh(Xk)

ef (x)/Tk dx −
∫

Sf (Xk)\Sh(Xk)

ef (Xk)/Tk dx.

Note that c > 0 because for all x ∈ Sf (Xk), f (x) ≥ f (Xk). This yields,

πf ,Tk(Sf (Xk)) ≥
∫

Sh(Xk)
ef (x)/Tk dx + ∫

Sf (Xk)\Sh(Xk)
ef (Xk)/Tk dx

∫
S\Sf (Xk)

ef (x)/Tk dx + ∫
Sh(Xk)

ef (x)/Tk dx + ∫
Sf (Xk)\Sh(Xk)

ef (Xk)/Tk dx

≥
∫

Sh(Xk)
ef (x)/Tk dx

∫
S\Sf (Xk)

ef (x)/Tk dx + ∫
Sh(Xk)

ef (x)/Tk dx + ∫
Sf (Xk)\Sh(Xk)

ef (Xk)/Tk dx
.

We again apply Lemma 4 by setting

a =
∫

Sh(Xk)

eh(x)/Tk dx

b =
∫

S\Sf (Xk)

ef (x)/Tk dx +
∫

Sh(Xk)

eh(x)/Tk dx +
∫

Sf (Xk)\Sh(Xk)

ef (Xk)/Tk dx

c =
∫

Sh(Xk)

ef (x)/Tk dx −
∫

Sh(Xk)

eh(x)/Tk dx,

340 J Glob Optim (2007) 38:333–365

where c > 0 since f (x) ≥ h(x) for all x ∈ Sh(Xk). This yields,

πf ,Tk(Sf (Xk)) ≥
∫

Sh(Xk)
eh(x)/Tk dx

∫
S\Sf (Xk)

ef (x)/Tk dx + ∫
Sh(Xk)

eh(x)/Tk dx + ∫
Sf (Xk)\Sh(Xk)

ef (Xk)/Tk dx

and because for all x ∈ S \ Sf (Xk), f (x) ≤ f (Xk), we have,

≥
∫

Sh(Xk)
eh(x)/Tk dx

∫
S\Sf (Xk)

ef (Xk)/Tk dx + ∫
Sh(Xk)

eh(x)/Tk dx + ∫
Sf (Xk)\Sh(Xk)

ef (Xk)/Tk dx

=
∫

Sh(Xk)
eh(x)/Tk dx

∫
S\Sh(Xk)

ef (Xk)/Tk dx + ∫
Sh(Xk)

eh(x)/Tk dx

= πh,Tk(Sh(Xk)).

Therefore, πf ,Tk(Sf (Xk)) ≥ πh,Tk(Sh(Xk)), i.e., h(x) is a function “worse" than the orig-
inal function f (x). 	

3.2 Calculation of the adaptive search cooling schedule

Given the kth record values for (P1) and (P2), we next develop a method to calculate
Tk and T̃k, respectively such that

πh,Tk(Sh(Xk)) ≥ 1 − α and (7)

π̃h̃,T̃k
(S̃h̃(X̃k)

) ≥ 1 − α (8)

for 0 ≤ α < 1. Note that if inequalities (7) and (8) are satisfied with respect to Tk and
T̃k, then according to Theorem 1, the desired results

πf ,Tk(Sf (Xk)) ≥ 1 − α and π̃f̃ ,T̃k
(S̃f̃ (X̃k)

) ≥ 1 − α

are also satisfied.
For both continuous and discrete cases, the probability of sampling the improving

region of the worst case function not only depends on the current record value but also
depends on the location of the global optimal point. For example, in the continuous
case, if x∗ is an interior point and (f ∗ − f (Xk))/K is less than the shortest distance
from x∗ to the boundary of the feasible set S, then the improving region Sh(Xk) is a
full n-dimensional ball with center at x∗. But if x∗ is located on the boundary of the
set S, then no matter how small the value of (f ∗ − f (Xk))/K, Sh(Xk) is always a part
of the n-dimensional ball. In general, the location of the global point is unknown.
The following theory allows a general location of the optimal point, however a tighter
bound is possible if some information on the location of the optimal point is known.

Theorem 2 Consider the program (P1) with the convex feasible region S and the pro-
gram (P2) with the feasible region S̃ being the collection of integer points contained
in an n-dimensional hyperrectangle. Suppose Xk, f (Xk) and Tk are given for current
iteration k for (P1) and X̃k, f̃ (X̃k) and T̃k are given for current iteration k for (P2).

J Glob Optim (2007) 38:333–365 341

Define the continuous sets Bθk , Bρ , B̃θ̃k
, and B̃ρ̃ as follows

Bθk = {x ∈ �n : ‖x − x∗‖ ≤ (f ∗ − f (Xk))/K = θk},
Bρ = {x ∈ �n : ‖x − x∗‖ ≤ ρ},

B̃θ̃k
= {x̃ ∈ �n : max

i=1,...,n
|x̃i − x̃∗

i | ≤ �(f̃ ∗ − f̃ (X̃k))/K̃� + 0.5 = θ̃k},

B̃ρ̃ = {x̃ ∈ �n : max
i=1,...,n

|x̃i − x̃∗
i | ≤ ρ̃ + 1}.

Then

πh,Tk(Sh(Xk)) ≥
∫

Bθk
eh(x)/Tk dx

∫
Bρ

eh(x)/Tk dx
and π̃h̃,T̃k

(S̃h̃(X̃k)
) ≥

∑
x̃∈(B̃

θ̃k
∩Zn)

eh̃(x̃)/T̃k

∑
x̃∈(B̃ρ̃∩Zn)

eh̃(x̃)/T̃k
.

Proof See Appendix B. 	

According to Theorem 2, the probability of sampling the improving region of the

worst case function corresponding for the continuous program (P1) is bounded by
the probability of sampling the n-dimensional ball Bθk with center x∗ over the larger
ball Bρ . And for the discrete program (P2), the probability of sampling the improving
region of h̃ is bounded by the probability of sampling the discrete points contained in
the n-dimensional hypercube B̃θ̃k

with center x̃∗ over the discrete domain contained

in the hypercube B̃ρ̃ . The locations of the optimal points of both continuous and
discrete programs do not influence the shapes of Bθk and B̃θ̃k

, which suggests a way
of calculating a lower bound on the probability of sampling the improving region
without the knowledge of the optimal point.

We next discuss a method to calculate Tk and T̃k, respectively such that
∫

Bθk
eh(x)/Tk dx

∫
Bρ

eh(x)/Tk dx
≥ 1 − α and (9)

∑
x̃∈(B̃

θ̃k
∩Zn)

eh̃(x̃)/T̃k

∑
x̃∈(B̃ρ̃∩Zn)

eh̃(x̃)/T̃k
≥ 1 − α (10)

for 0 ≤ α < 1. Note that if (9) and (10) are satisfied with respect to Tk and T̃k, then
(7) and (8) are also satisfied by Theorem 2.

We first consider solving for Tk for the continuous problem. The following theorem
states that solving for the temperature Tk for the continuous problem to satisfy (9) is
equivalent to solving (11) in Theorem 3 for zk and using zk to determine Tk.

Theorem 3 Consider the continuous problem defined by (P1) with optimal objective

function value f ∗. Let Mk =
(

K
f ∗−f (Xk)

)n · (1−α
α

) · vn(Bρ\Bθk)

2πn/2/�(n
2)

. Then solving for zk that

satisfies

pMk(zk) = (n − 1)! −
n−1∑

i=0

(n − 1)!
i! zi

ke−zk − Mkzn
ke−zk ≥ 0 (11)

342 J Glob Optim (2007) 38:333–365

and setting Tk = (f ∗−f (Xk))/zk, provides Tk that satisfies the inequality

∫
Bθk

eh(x)/Tk dx
∫

Bρ
eh(x)/Tk dx

≥
1 − α.

Proof
∫

Bθk
eh(x)/Tk dx

∫
Bρ

eh(x)/Tk dx
=

∫
Bθk

eh(x)/Tk dx
∫

Bρ\Bθk
eh(x)/Tk dx + ∫

Bθk
eh(x)/Tk dx

and by definition, h(x) = f ∗ − K‖x − x∗‖ for all x ∈ Bθk , and h(x) = f (Xk) for all
x ∈ Bρ \ Bθk , thus,

=
∫

Bθk
e(f ∗−K‖x−x∗‖)/Tk dx

∫
Bρ\Bθk

ef (Xk)/Tk dx + ∫
Bθk

e(f ∗−K‖x−x∗‖)/Tk dx

=
ef ∗/Tk · ∫

Bθk
e−K‖x−x∗‖/Tk dx

ef (Xk)/Tk · vn(Bρ \ Bθk) + ef ∗/Tk · ∫
Bθk

e−K‖x−x∗‖/Tk dx
.

By substituting u = x − x∗ and changing the integration from rectangular coordinates
to polar coordinates, with G = {u ∈ �n : ‖u‖ ≤ (f ∗ − f (Xk))/K = θ}, we obtain

∫
Bθk

eh(x)/Tk dx
∫

Bρ
eh(x)/Tk dx

= ef ∗/Tk · ∫
G e−K‖u‖/Tk du

ef (Xk)/Tk · vn(Bρ \ Bθk) + ef ∗/Tk · ∫
G e−K‖u‖/Tk du

= (2πn/2/�(n/2)) · ef ∗/Tk · ∫ θ

0 rn−1e−Kr/Tk dr

vn(Bρ \ Bθk) · ef (Xk)/Tk + 2πn/2

�(n/2)
· ef ∗/Tk · ∫ θ

0 rn−1e−Kr/Tk dr

Therefore, the inequality

∫
Bθk

eh(x)/Tk dx
∫

Bρ
eh(x)/Tk dx

≥ 1 − α is equivalent to

(2πn/2/�(n/2)) · ef ∗/Tk · ∫ θ

0 rn−1e−Kr/Tk dr

vn(Bρ \ Bθk) · ef (Xk)/Tk + 2πn/2

�(n/2)
· ef ∗/Tk · ∫ θ

0 rn−1e−Kr/Tk dr
≥ 1 − α. (12)

Carrying out the integration, inequality (12) is,

(n − 1)! −
n−1∑

i=0

(n − 1)!
i!

(
f ∗ − f (Xk)

Tk

)i

e(f (Xk)−f ∗)/Tk

−
(

K
Tk

)n (
1 − α

α

)
vn(Bρ \ Bθk)

2πn/2/�(n
2)

e(f (Xk)−f ∗)/Tk ≥ 0.

Substituting zk = (f ∗ − f (Xk))/Tk and Mk =
(

K
f ∗−f (Xk)

)n ·
(

1−α
α

)
· vn(Bρ\Bθk)

2πn/2/�(n
2)

into the

above equation, we have

(n − 1)! −
n−1∑

i=0

(n − 1)!
i! zi

ke−zk − Mkzn
ke−zk ≥ 0.

Therefore solving for Tk in inequality

∫
Bθk

eh(x)/Tk dx
∫

Bρ
eh(x)/Tk dx

≥ 1 − α is equivalent to solving

for zk in (11) and setting Tk = (f ∗ − f (Xk))/zk. 	

J Glob Optim (2007) 38:333–365 343

Theorem 3 transfers the problem of solving for Tk in inequality

∫
Bθk

eh(x)/Tk dx
∫

Bρ
eh(x)/Tk dx

≥ 1−α

to the problem of solving for zk in Eq. 11. Later in this section, we discuss characteris-
tics of pMk(zk). Next, in Theorem 4, we derive an analogous expression to solve for the
temperature T̃k in the discrete problem. For the discrete problem, we consider two
cases; when there is a single discrete point contained in the region B̃θ̃k

, and when there

are several discrete points contained in the region. In the first case, T̃k is calculated
directly. In the latter case, T̃k is calculated using pM̃k

(z̃k). The proof of Theorem 4
relies on two lemmas, Lemmas 4 and 5, which appear in the appendices.

Theorem 4 Consider the discrete problem defined by (P 2) with optimal objective

function value f̃ ∗. If f̃ ∗−f̃ (X̃k)

K̃
< 1, then T̃k ≤ f̃ ∗−f̃ (X̃k)

ln[1−α
α

(|B̃ρ̃∩Zn|−1)] solves the inequality
∑

x̃∈(B̃
θ̃k

∩Zn)
eh̃(x̃)/T̃k

∑
x̃∈(B̃ρ̃∩Zn)

eh̃(x̃)/T̃k
≥ 1 − α. Moreover, if f̃ ∗−f̃ (X̃k)

K̃
≥ 1, setting M̃k = (K̃

f̂ ∗−f̃ (X̃k)
)n · (1−α

α
) ·

|B̃ρ̃∩Zn|−(2δ̃k)n

2n·n , with f̂ ∗ = f̃ ∗ − 0.5K̃ and |B̃ρ̃ ∩ Zn| representing the number of discrete

points contained in the hypercube B̃ρ̃ and δ̃k = f̂ ∗−f̃ (X̃k)

K̃
, we have that solving for z̃k

satisfying

pM̃k
(z̃k) = (n − 1)! −

n−1∑

i=0

(n − 1)!
i! z̃i

ke−z̃k − M̃kz̃n
ke−z̃k ≥ 0 (13)

and setting T̃k = (f̂ ∗ − f̃ (X̃k))/z̃k provides a T̃k that satisfies the inequality
∑

x̃∈(B̃
θ̃k

∩Zn)
eh̃(x̃)/T̃k

∑
x̃∈(B̃ρ̃∩Zn)

eh̃(x̃)/T̃k
≥ 1 − α.

Proof If f̃ ∗−f̃ (X̃k)

K̃
< 1, then there is only one lattice point, x̃∗, contained in the hyper-

cube B̃θ̃k
. Hence

∑
x̃∈(B̃

θ̃k
∩Zn)

eh̃(x̃)/T̃k

∑
x̃∈(B̃ρ̃∩Zn)

eh̃(x̃)/T̃k
= ef̃ ∗/T̃k

ef̃ ∗/T̃k + (|B̃ρ̃ ∩ Zn| − 1)ef̃ (X̃k)/T̃k
≥ 1 − α,

which is equivalent to

T̃k ≤ f̃ ∗ − f̃ (X̃k)

ln[1−α
α

(|B̃ρ̃ ∩ Zn| − 1)] .

Therefore, if f̃ ∗−f̃ (X̃k)

K̃
< 1, T̃k ≤ f̃ ∗−f̃ (X̃k)

ln[1−α
α

(|B̃ρ̃∩Zn|−1)] solves

∑
x̃∈(B̃

θ̃k
∩Zn)

eh̃(x̃)/T̃k

∑
x̃∈(B̃ρ̃∩Zn)

eh̃(x̃)/T̃k
≥ 1 − α.

Now consider the case f̃ ∗−f̃ (X̃k)

K̃
≥ 1, which implies

∑
x̃∈(B̃

θ̃k
∩Zn)

eh̃(x̃)/T̃k

∑
x̃∈(B̃ρ̃∩Zn)

eh̃(x̃)/T̃k
=

∑
x̃∈(B̃

θ̃k
∩Zn)

eh̃(x̃)/Tk

∑
x̃∈(B̃

θ̃k
∩Zn)

eh̃(x̃)/T̃k + ∑
x̃∈(B̃ρ̃∩Zn)\(B̃

θ̃k
∩Zn)

ef̃ (X̃k)/T̃k
.

344 J Glob Optim (2007) 38:333–365

We let mk = � f̃ ∗−f̃ (X̃k)

K̃
�, and since (B̃θ̃k

∩ Zn) = {x̃ ∈ Zn : maxi=1,...,n(|x̃i − x̃∗
i |) ≤ mk},

this implies that the number of lattice points contained in the set B̃θ̃k
is (2mk + 1)n.

Consequently, we have
∑

x̃∈(B̃
θ̃k

∩Zn)
eh̃(x̃)/T̃k

∑
x̃∈(B̃ρ̃∩Zn)

eh̃(x̃)/T̃k
=

∑
x̃∈(B̃

θ̃k
∩Zn)

eh̃(x̃)/T̃k

∑
x̃∈(B̃

θ̃k
∩Zn)

eh̃(x̃)/T̃k +
(
|B̃ρ̃ ∩ Zn| − (2mk + 1)n

)
ef̃ (X̃k)/T̃k

and applying Lemmas 4 and 5 yields

≥
∫ δ̃k

0 e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du
∫ δ̃k

0 e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du +
(
|B̃ρ̃ ∩ Zn| − (2mk + 1)n

)
ef̃ (X̃k)/T̃k

and using the fact that δ̃k ≤ mk + 0.5, one has

≥
∫ δ̃k

0 e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du
∫ δ̃k

0 e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du +
(
|B̃ρ̃ ∩ Zn| − (2δ̃k)n

)
ef̃ (X̃k)/T̃k

.

Therefore, if f̃ ∗−f̃ (X̃k)

K̃
≥ 1, T̃k can be determined by solving the inequality

∑
x̃∈(B̃

θ̃k
∩Zn)

eh̃(x̃)/T̃k

∑
x̃∈(B̃ρ̃∩Zn)

eh̃(x̃)/T̃k

≥
∫ δ̃k

0 e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du
∫ δ̃k

0 e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du +
(
|B̃ρ̃ ∩ Zn| − (2δ̃k)n

)
ef̃ (X̃k)/T̃k

≥ 1 − α.

Following the similar method used for proving Theorem 3 and the fact that

δ̃k∫

0

e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du

= 2nn ·
(

T̃k

K̃

)n

·
[
(n − 1)! − e−K̃δ̃k/T̃k

n−1∑

i=0

(n − 1)!
i!

(
K̃δ̃k/T̃k

)]
· ef̂ ∗/T̃k ,

it is easy to prove that solving for T̃k satisfying the second inequality above is equiva-
lent to solving for z̃k in the inequality (13) and setting T̃k = (f̂ ∗ − f̃ (X̃k))/z̃k. 	

Theorems 3 and 4 provide a way to solve for Tk and T̃k for the continuous problem
and the discrete problem, respectively. Both theorems are related to the function

pM(z) = (n − 1)! −
n−1∑

i=0

(n − 1)!
i! zie−z − Mzne−z

with M = Mk for the continuous problem and M = M̃k for the discrete problem.
Next we discuss the characteristics of the pM(z) function.

J Glob Optim (2007) 38:333–365 345

Lemma 1 Consider the function pM(z) = (n − 1)! −∑n−1
i=0

(n−1)!
i! zie−z −Mzne−z with

z ∈ �+. Then

(1) if nM ≤ 1, pM(z) > 0 for all z > 0;
(2) if nM > 1, the equation pM(z) = 0 has an unique solution z∗ such that

z∗ > nM−1
M , and for all z ≥ z∗ one has pM(z) ≥ 0

Proof The lemma is proved by analyzing the shape of the function pM(z) correspond-
ing to the parameters n and M. The detailed proof is given in Appendix D. 	

According to Lemma 1, finding z such that pM(z) ≥ 0 can be separated into two
cases based on the parameters n and M. These two cases are shown in Fig. 2. If
nM ≤ 1, any positive value of z satisfies pM(z) ≥ 0; if nM > 1, any z ≥ z∗ will
satisfy pM(z) ≥ 0, where z∗ solves equation pM(z) = 0. Lemma 1 guarantees the
uniqueness and existence of z∗, which implies that z∗ can be calculated numerically
by any simple line search algorithm, e.g. bisection. An important issue for those line
search algorithms are the choice of initial points, i.e. the upper and lower bounds of
z∗. Lemma 1 provides a lower bound, nM−1

M < z∗. Next, in Lemmas 2 and 3, we
present upper bounds on z∗ corresponding to the continuous and discrete problems,
respectively.

Fig. 2 Two cases of the graph
of the function pM(z)

346 J Glob Optim (2007) 38:333–365

Lemma 2 Consider the continuous problem (P1) and the function

pMk(zk) = (n − 1)! −
n−1∑

i=0

(n − 1)!
i! zi

ke−zk − Mkzn
ke−zk

where zk and Mk are defined as in Theorem 3. If nMk > 1, let z∗
k be the solution to

pMk(zk) = 0, then

z∗
k ≤ Lk

(1 − ε)
, (14)

where 0 < ε < 1, Lk = ln
(

1−α
α

· vn(Bρ)−vn(Bε̂k
)

vn(Bε̂k
)

)
, 0 ≤ α < 1, Bε̂k

is an n-dimensional

ball with radius ε̂k = ε(f ∗ − f (Xk))/K and Bρ is an n-dimensional ball with radius ρ

as defined in Theorem 2.

Proof See Appendix E. 	

Now we turn to an upper bound on z̃∗
k for the discrete problem.

Lemma 3 Consider the discrete problem (P 2) and the function

pM̃k
(z̃k) = (n − 1)! −

n−1∑

i=0

(n − 1)!
i! z̃i

ke−z̃k − M̃kz̃n
ke−z̃k ,

where z̃k and M̃k are defined as in Theorem 4. If f̃ ∗−f̃ (X̃k)

K̃
≥ 1 and nM̃k > 1, letting z̃∗

k
be the solution to pM̃k

(z̃k) = 0, we have that

z̃∗
k ≤ L̃k

(1 − ε)
, (15)

where 0 < ε < 1, L̃k = ln

(
1−α
α

· |B̃ρ̃∩Zn|−(2εδ̃k)n

(2εδ̃k)n

)

, 0 ≤ α < 1, δ̃k and f̂ ∗ are defined

as in Theorem 4, B̃ρ̃ is defined as in Theorem 2, and |B̃ρ̃ ∩ Zn| denotes the number of
integer points contained in B̃ρ̃ .

Proof See Appendix E. 	

3.3 Cooling schedule strategy

We are now ready to summarize the cooling schedule strategy for the adaptive search
algorithm. This cooling schedule strategy ensures that the probability of sampling an
improving point is not less than 1 − α. Consequently the expected number of record
points and sample points is linear in the dimension of the problem. This linearity
result assumes that points are sampled according to a Boltzmann distribution. Since
generating points according to a Boltzmann distribution is in general more difficult
when the temperature is small, we endeavor to keep Tk as high as possible in our
cooling schedule strategy.

J Glob Optim (2007) 38:333–365 347

3.3.1 Cooling Schedule Strategy for (P1)

• Keep Tk = ∞ until nMk > 1, where Mk is defined in Theorem 3.
• When nMk > 1, either

(i) use a numerical method to calculate z∗
k by solving pMk(zk) = 0 as in Theo-

rem 3 Eq. 11 and set Tk = (f ∗ − f (Xk))/z∗
k, or

(ii) use the upper bound on z∗
k in Lemma 2 Eq. 14 to calculate Tk =

(1−ε)(f ∗−f (Xk))
Lk

, where Lk is defined in Lemma 2.

3.3.2 Cooling Schedule Strategy for (P2)

• Keep T̃k = ∞ until nM̃k > 1, where M̃k is defined in Theorem 4.

• When nM̃k > 1 and f̃ ∗ − f̃ (X̃k)/K̃ < 1, set T̃k = f̃ ∗−f̃ (X̃k)

ln((|(B̃ρ̃∩Zn)|−1)(1−α)/α)
.

• When nM̃k > 1 and f̃ ∗ − f̃ (X̃k)/K̃ ≥ 1, either
(i) use a numerical method to calculate z̃∗

k by solving pM̃k
(z̃k) = 0 as in Theo-

rem 4 Eq. 13 and set T̃k = (f̂ ∗ − f̃ (X̃k))/z̃∗
k, where f̂ ∗ = f̃ ∗ − 0.5K̃ as defined

in Theorem 4, or
(ii) use the upper bound on z̃∗

k in Lemma 3 Eq. 15 to calculate T̃k =
(1−ε)(f̂ ∗−f̃ (X̃k))

L̃k
, where L̃k is defined in Lemma 3.

To implement the cooling schedule strategies, we need to know several pieces of
information: dimension n, the current record value f (Xk) or f̃ (X̃k), the Lipschitz con-
stant K for (P1) or K̃ for (P2), the optimal value f ∗, and the n-dimensional volume
of the feasible set. For a specific problem, we certainly know the dimension. At the
kth iteration, we also know the record value. The constant K or K̃ is assumed to be
known, but an estimate that is an upper bound may also be used [16]. In general,
the maximum function value f ∗ is unknown. However any lower bound to f ∗ that
exceeds f (Xk) may be used at the sacrifice of a cooler temperature than needed. In
the following computational study, we estimate f ∗ using order statistics as in [18].
Similarly, any upper bound on the volume of the feasible region may be used while
maintaining the linearity properties of the resulting cooling schedule.

4 Numerical results

We have performed a computational study comparing an adaptive cooling schedule
with several other cooling schedules on continuous and discrete test problems from
the literature. The other cooling schedules include: a cooling schedule proposed by
Bohachevsky et al. [5], an exponential cooling schedule [11], and a logarithmic cool-
ing schedule [10]. Several parameters and implementations are considered and are
summarized below.
Adaptive cooling schedule (summarized in Sect. 3.3)

f ∗ known, α = 0.01, 0.05, 0.9, Tk = f ∗−f (Xk)
zk

,

f̂ estimate, α = 0.01, 0.05, 0.9, Tk = f̂−f (Xk)
zk

.

348 J Glob Optim (2007) 38:333–365

Fixed beta cooling schedule [5]

f ∗ known, β = 0.01, 1, 100, Tk = β(f ∗ − f (Xk)),

f̂ estimate, β = 0.01, 1, 100, Tk = β(f̂ − f (Xk)).

Exponential cooling schedule [11]

Tk = T0γ
k,

T0 = 0.01, 1, 100 and γ = 0.01, 0.99.

Logarithmic cooling schedule [10]

Tk = T0

ln(k + 1)
,

T0 = 0.01, 1, 100.

The adaptive cooling schedule developed in this paper uses the information of
f ∗. In the computational study, we tested two cases, one is to give a known global
optimum, and the other is to estimate and update f̂k during the process of running the
algorithm. The estimate f̂k for f ∗ is based on order statistics and was used in [18],

f̂k = f (Xk) + f (Xk) − f (Xk−1)

(1 − q)−n/2 − 1
, (16)

where f (Xk) and f (Xk−1) are the first and second best points found so far, n is the
dimension of the test problem and we chose q = 0.1.

The adaptive cooling schedule is summarized in Sect. 3.3, where zk is calculated
every time an improving point is found. The problem specific parameters (including
an upper bound on the Lipschitz constant) used in this calculation are summarized
with the test problems given in Appendix F. The other parameter specific to this cool-
ing schedule is α, where 1 − α is the desired probability of sampling an improving
point. Three values of α, 0.01, 0.05, and 0.9, were used in the computational study to
represent a spread of values.

The cooling schedule suggested by Bohachevsky et al. [5] has a form Tk = β(f ∗ −
f (Xk)) where the parameter value of β is chosen at the onset and held constant
throughout the algorithm. The temperature is updated every time an improving point
is found. This fixed beta cooling schedule was also run when the global optimum f ∗ is
known and when it is estimated with f̂k as in Eq. 16. Typically the parameter value β

is determined by trial and error, and we used three values of β, 0.01, 1, and 100, where
the smallest value was determined by trial and error to provide good performance.
The two other values were chosen to represent a spread.

The exponential cooling schedule [11] of the form Tk = T0γ
k was used and the

temperature was updated every iteration (in contrast to the previous cooling sched-
ules that updated temperature when an improving point was found). Values of T0,
0.01, 1, and 100, and γ , 0.01, 0.99, were chosen by trial and error, and to represent a
spread of values.

The logarithmic cooling schedule [10] of the form Tk = T0
ln(k+1)

was also imple-
mented where temperature was updated every iteration, and three values of T0, 0.01,
1, and 100, were used.

The candidate point generator used in the simulated annealing algorithm is from
the family of Hit-and-Run methods with continuous [22] and discrete [21] versions.

J Glob Optim (2007) 38:333–365 349

Four test problems, described in Appendix F, were used, two in a continuous form and
two in a discrete form. The sinusoidal function was introduced in [24], used in [2], and
was motivated by an engineering design problem of composite laminate structures.

For each cooling schedule, 100 runs with random starting points were performed
on each test problem. The computational results are shown in the following tables
and graphs. Tables 1–4 show the performance of the 21 different cooling schedules
with parameters for solving test problems 1–4, where in each cell the upper integer
indicates the number of successful runs out of 100 that achieved a value no worse
than the associated y-value, and the lower number indicates the average number of
function evaluations of the successful runs to achieve the y-value. The bold line indi-
cates the parameter value with the best performance. Figures 3–6 graphically illustrate

Fig. 3 Average number of function evaluations versus function value for successful runs for the
continuous six-dimensional Hartmann6 test problem

Fig. 4 Average number of function evaluations versus function value for successful runs for the
discrete six-dimensional Hartmann6 test problem

350 J Glob Optim (2007) 38:333–365

Fig. 5 Average number of function evaluations versus function value for successful runs for the
continuous ten-dimensional sinusoidal test problem

Fig. 6 Average number of function evaluations versus function value for successful runs for the
discrete ten-dimensional sinusoidal test problem

related results from Tables 1–4. The four graphs show the performance of each cooling
schedule with its best parameter value for solving each test problem.

While all of the cooling schedules converge to zero temperature, the graphs high-
light the different progress of the algorithms. For example, in Fig. 6, several cooling
schedules have long plateaus which are indicative of the algorithm getting stuck and
not quickly finding an improving point. This may be caused by the temperature going
to zero too quickly, and then relying on the candidate point generator (Hit-and-Run)
to eventually find an improving point that is close to global optimum.

There is still a gap between the theoretical analysis and the algorithm in practice,
because the Hit-and-Run generator does not sample according to a true Boltzmann
distribution. However the theory does motivate the adaptive cooling schedule. The

J Glob Optim (2007) 38:333–365 351

Table 1 Number of successful runs out of 100 and average number of function evaluations for
successful runs for the continuous six-dimensional Hartmann test problem

y 2.0 2.2 2.4 2.6 2.8 3.0 3.2

Adap (given f*) 100 100 100 100 100 98 65
α = 0.01 77.5 84.2 93.8 103.5 121.9 186.9 236.0
Adap (given f*) 100 100 100 100 100 98 65
α = 0.05 75.5 82.2 92.0 101.3 119.4 184.8 232.8
Adap (given f*) 100 100 100 100 100 96 65
α = 0.9 74.7 82.0 91.7 100.5 118.6 172.1 230.3
Adap (estimate f*) 99 99 99 99 99 95 67
α = 0.01 77.2 86.6 95.5 104.5 123.9 164.8 238.1
Adap (estimate f*) 99 99 99 99 99 95 67
α = 0.05 77.3 86.5 95.9 104.8 125.0 164.6 240.9
Adap (estimate f*) 99 99 99 99 99 95 68
α = 0.9 69.5 78.7 90.9 100.9 121.9 170.6 240.8
Fixed beta (given f*) 100 100 100 100 100 98 60
β = 0.01 69.0 75.8 85.1 97.8 115.9 199.0 259.7
Fixed beta (given f*) 100 100 98 98 95 85 31
β = 1 179.4 241.9 329.0 399.0 488.7 635.2 884.2
Fixed beta (given f*) 99 95 89 71 38 14 0
β = 100 285.0 388.6 508.3 590.5 667.2 593.8 –
Fixed beta (estimate f*) 99 99 99 99 99 96 66
β = 0.01 82.0 91.2 100.3 109.2 130.3 189.3 253.3
Fixed beta (estimate f*) 100 100 100 98 96 86 27
β = 1 118.2 149.3 188.5 272.6 375.3 520.1 536.4
Fixed beta (estimate f*) 100 96 92 72 40 16 0
β = 100 287.2 371.4 479.5 573.3 647.9 754.2 –
Exp (γ = 0.99) 100 100 100 100 100 96 62
T0 = 0.01 68.2 75.0 83.8 96.8 113.5 189.0 229.2
Exp (γ = 0.99) 100 100 100 100 100 96 59
T0 = 1 101.7 113.4 130.8 145.2 176.7 254.0 406.0
Exp (γ = 0.99) 100 100 100 100 100 96 68
T0 = 100 243.5 324.0 378.6 468.0 556.4 675.2 813.6
Exp (γ = 0.01) 100 100 100 100 100 95 61
T0 = 0.01 86.3 93.4 101.9 113.5 134.4 207.9 274.8
Exp (γ = 0.01) 100 100 100 100 100 95 62
T0 = 1 88.6 95.7 103.8 115.6 135.0 204.2 269.3
Exp (γ = 0.01) 100 100 100 100 100 96 63
T0 = 100 85.4 93.2 101.8 113.3 130.8 195.3 249.0
Log 100 100 100 100 100 98 60
T0 = 0.01 79.4 86.64 95.31 107.94 129.46 215.85 251.03
Log 100 100 100 100 100 100 60
T0 = 1 72.1 82.8 90.0 99.0 128.8 212.8 597.0
Log 99 96 95 73 45 8 0
T0 = 100 272.8 360.7 501.5 603.0 735.6 976.9 –

numerical results indicate that in most of the cases, the adaptive cooling schedule with
its best choice of parameter was first or second best compared to the others, and its
performance is not very sensitive to the choice of α. In the theory, the choice of α

impacts the temperature and consequently the number of function evaluations, but
our adaptive cooling schedule is derived from a conservative worst case function, h
or h̃, and bound on the Lipschitz constant, K or K̃. In practice, we speculate that the
impact of α on performance is overshadowed by our conservative worst case function
and loose Lipschitz bounds.

352 J Glob Optim (2007) 38:333–365

Table 2 Number of successful runs out of 100 and average number of function evaluations for
successful runs for the discrete six-dimensional Hartmann test problem

y 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Adap (given f*) 100 100 100 100 100 100 100 100
α = 0.01 563.2 613.1 613.1 1080.7 1080.7 1080.7 1081.0 1081.0
Adap (given f*) 100 100 100 100 100 100 100 100
α = 0.05 579.9 645.9 645.9 1095.1 1095.1 1095.1 1095.5 1095.5
Adap (given f*) 100 100 100 100 100 100 100 100
α = 0.9 576.7 634.3 634.3 977.2 977.2 977.2 977.5 977.5
Adap (estimate f*) 100 100 100 100 100 100 100 100
α = 0.01 422.7 1861.9 1861.9 2194.7 2194.7 2196.1 2196.4 2196.4
Adap (estimate f*) 100 100 100 100 100 100 100 100
α = 0.05 430.6 1995.1 1995.1 2347.9 2347.9 2349.3 2349.6 2349.6
Adap (estimate f*) 100 100 100 100 100 100 100 100
α = 0.9 427.6 1505.6 1505.6 1824.9 1824.9 1826.6 1827.5 1827.5
Fixed beta (given f*) 100 100 100 100 100 100 100 100
β = 0.01 557.3 953.7 953.7 1340.9 1340.9 1341.3 1341.4 1341.4
Fixed beta (given f*) 100 100 100 90 90 90 90 90
β = 1 511.7 553.9 553.9 8710.4 8710.4 8710.4 8890.9 8890.9
Fixed beta (given f*) 100 100 100 88 88 88 86 86
β = 100 532.0 586.2 586.2 10131.4 10131.4 10131.4 10512.9 10512.9
Fixed beta (estimate f*) 100 100 100 100 100 100 100 100
β = 0.01 479.1 2229.3 2229.3 2532.8 2532.8 2533.5 2533.9 2533.9
Fixed beta (estimate f*) 100 100 100 97 97 97 97 97
β = 1 584.0 623.4 623.4 7571.8 7571.8 7571.8 7909.4 7909.4
Fixed beta (estimate f*) 100 100 100 91 91 91 89 89
β = 100 517.5 574.0 574.0 10284.4 10284.4 10395.3 10745.5 10745.5
Exp (γ = 0.99) 100 100 100 100 100 100 100 100
T0 = 0.01 405.3 1214.7 1214.7 1468.2 1468.2 1469.1 1469.1 1469.1
Exp (γ = 0.99) 100 100 100 100 100 100 100 100
T0 = 1 422.6 792.3 792.3 1675.1 1675.1 1676.2 1676.5 1676.5
Exp (γ = 0.99) 100 100 100 100 100 100 100 100
T0 = 100 507.2 633.0 633.0 1975.3 1975.3 1975.6 1976.1 1976.1
Exp (γ = 0.01) 100 100 100 100 100 100 100 100
T0 = 0.01 409.9 1708.7 1708.7 1862.2 1862.2 1863.9 1864.6 1864.6
Exp (γ = 0.01) 100 100 100 100 100 100 100 100
T0 = 1 397.2 1754.0 1754.0 1932.7 1932.7 1935.8 1935.9 1935.9
Exp (γ = 0.01) 100 100 100 100 100 100 100 100
T0 = 100 376.0 1633.7 1633.7 1767.3 1767.3 1769.5 1770.0 1770.0
Log 100 100 100 100 100 100 100 100
T0 = 0.01 474.46 828.04 828.04 1172 1172 1172 1172 1172
Log 100 100 100 97 97 97 95 95
T0 = 1 526.5 570.4 570.4 8879.5 8879.5 8963.0 9276.8 9276.8
Log 100 100 100 87 87 87 85 85
T0 = 100 532.0 586.2 586.2 10357.6 10357.6 10357.6 10723.4 10723.4

The performance of the fixed beta cooling schedule and the logarithmic cooling
schedule highly depends on the choice of parameter (among three parameter values,
only one of them performs well and the other two have among the four worst perfor-
mance). And in most of the cases the performance of the fixed beta cooling schedule
and the logarithmic cooling schedule with their best choice of parameters (among the
three tested values) is worse than that of our adaptive cooling schedule with the best
choice of α. The performance of the exponential cooling schedule is very close to the
performance of the adaptive cooling schedule. In most of the cases, the performance

J Glob Optim (2007) 38:333–365 353

Table 3 Number of successful runs out of 100 and average number of function evaluations for
successful runs for the continuous ten-dimensional sinusoidal test problem

y 1.0 1.5 2.0 2.5 3.0 3.465

Adap (given f*) 98 98 98 98 91 91
α = 0.01 921.7 953.6 1027.3 1249.1 1733.0 3921.8
Adap (given f*) 100 100 100 100 92 92
α = 0.05 1206.3 1237.9 1312.7 1532.4 1874.9 4100.5
Adap (given f*) 99 99 99 99 93 93
α = 0.9 1089.9 1123.6 1208.0 1614.6 2245.2 4438.5
Adap (estimate f*) 100 91 91 91 87 87
α = 0.01 775.1 1228.5 1297.2 1496.1 1569.7 3858.6
Adap (estimate f*) 100 91 91 91 87 87
α = 0.05 775.2 1228.9 1297.3 1498.6 1575.2 3858.3
Adap (estimate f*) 100 91 91 91 87 87
α = 0.9 775.4 1229.1 1297.4 1496.6 1576.3 3810.4
Fixed beta (given f*) 100 100 100 100 96 95
β = 0.01 1281.8 1315.0 1413.5 1865.1 2171.1 3875.1
Fixed beta (given f*) 100 71 2 0 0 0
β = 1 2951.3 18540.4 18918.0 – – –
Fixed beta (given f*) 100 61 3 0 0 0
β = 100 3345.3 20012.7 14022.3 – – –
Fixed beta (estimate f*) 100 91 91 91 86 86
β = 0.01 695.7 893.4 960.5 1166.2 1396.6 3691.6
Fixed beta (estimate f*) 100 99 82 43 14 1
β = 1 1016.0 2314.1 10498.8 15589.3 16582.1 10178.0
Fixed beta (estimate f*) 100 69 2 0 0 0
β = 100 3339.4 19613.0 14795.0 – – –
Exp (γ = 0.99) 100 89 89 89 83 83
T0 = 0.01 1061.4 1847.1 1911.0 2130.4 2664.6 4866.9
Exp (γ = 0.99) 100 97 97 97 93 93
T0 = 1 440.1 670.8 754.1 985.2 1231.5 3260.9
Exp (γ = 0.99) 100 99 99 99 96 96
T0 = 100 864.6 995.8 1078.3 1298.9 1549.8 3544.3
Exp (γ = 0.01) 100 87 87 87 82 82
T0 = 0.01 828.6 1078.8 1139.9 1339.8 1676.5 3968.4
Exp (γ = 0.01) 100 88 88 88 83 83
T0 = 1 932.7 1334.1 1400.8 1610.4 1750.9 4021.9
Exp (γ = 0.01) 100 90 90 90 84 84
T0 = 100 1504.8 2975.2 3039.1 3231.2 3488.3 5671.4
Log 95 89 89 89 85 85
T0 = 0.01 934.65 2126.3 2190 2392.8 2907.4 5157.8
Log 100 100 100 100 100 0
T0 = 1 380.8 579.0 958.7 4593.9 11367.0 –
Log 100 64 2.0 0 0 0
T0 = 100 3148.0 19023.1 23262.0 – – –

of adaptive cooling schedule with known f ∗ is better than the performance using f̂k
estimated by Eq. 16. For fixed beta cooling schedule, the performance with known f ∗
for solving two test problems out of four is better than the performance using f̂k. We
expect performance given f ∗ to be better than performance using an estimate because
the cooling schedule can take advantage of better information. A big advantage of
our robust adaptive cooling schedule is eliminating the need for trial and error to
determine parameter values.

354 J Glob Optim (2007) 38:333–365

Table 4 Number of successful runs out of 100 and average number of function evaluations for
successful runs for the discrete ten-dimensional sinusoidal test problem

y 1.0 1.5 2.0 2.5 3.0 3.5

Adap (given f*) 100 100 100 100 100 99
α = 0.01 115.7 183.6 318.7 774.4 2742.3 19620.0
Adap (given f*) 100 100 100 100 100 100
α = 0.05 113.3 173.3 319.2 748.8 2143.8 19224.9
Adap (given f*) 100 100 100 100 100 100
α = 0.9 116.5 179.4 330.7 758.8 1874.6 19168.4
Adap (estimate f*) 100 100 100 100 100 98
α = 0.01 126.6 211.1 441.6 942.5 3570.8 20583.9
Adap (estimate f*) 100 100 100 100 100 98
α = 0.05 126.6 211.1 441.6 942.5 3568.7 20506.9
Adap (estimate f*) 100 100 100 100 100 98
α = 0.9 127.2 210.8 440.1 931.4 3651.2 20614.6
Fixed beta (given f*) 100 100 100 100 100 97
β = 0.01 97.0 157.3 324.3 769.8 3653.7 18951.3
Fixed beta (given f*) 100 95 2 0 0 0
β = 1 2373.1 17530.7 9485.0 – – –
Fixed beta (given f*) 100 71 2 0 0 0
β = 100 2315.3 17855.8 38299.5 – – –
Fixed beta (estimate f*) 100 100 100 100 100 99
β = 0.01 126.7 220.3 529.9 1058.2 4495.2 21273.5
Fixed beta (estimate f*) 100 100 91 51 17 0
β = 1 409.9 2337.5 9870.0 15599.2 23929.1 –
Fixed beta (estimate f*) 100 82 3 0 0 0
β = 100 2591.9 16956.9 14490.0 – – –
Exp (γ = 0.99) 100 100 100 100 100 100
T0 = 0.01 89.4 141.1 252.9 649.3 1873.8 18070.1
Exp (γ = 0.99) 100 100 100 100 100 99
T0 = 1 282.6 362.1 503.9 1018.6 2684.4 18907.2
Exp (γ = 0.99) 100 100 100 100 99 99
T0 = 100 623.0 777.5 923.6 1300.0 2755.5 19854.8
Exp (γ = 0.01) 100 100 100 100 100 100
T0 = 0.01 94.5 155.0 342.4 944.5 3842.8 18963.1
Exp (γ = 0.01) 100 100 100 100 99 99
T0 = 1 92.9 162.6 493.0 925.7 2017.6 16976.1
Exp (γ = 0.01) 100 100 100 100 98 96
T0 = 100 97.4 193.0 411.9 1024.4 4122.0 18207.5
Log 100 100 100 100 100 99
T0 = 0.01 104.05 171.37 361.37 954.48 3285.4 20734
Log 100 100 100 100 100 0
T0 = 1 350.0 512.9 893.9 5455.3 14410.8 –
Log 100 86 3 0 0 0
T0 = 100 2764.1 18294.6 37474.7 – – –

5 Summary and conclusion

Simulated annealing is a class of sequential probabilistic search techniques for solv-
ing global optimization problems. The performance of simulated annealing is highly
dependent on the choice of cooling schedule employed. In this paper, we consider
an algorithm called AS which is designed to model an idealized version of simulated
annealing by assuming points can be sampled exactly according to a sequence of
Boltzmann distributions. The paper focuses on analytically deriving cooling schedule
strategies for AS applied to a general class of optimization problems over continuous

J Glob Optim (2007) 38:333–365 355

and discrete domains. By choosing the temperature to guarantee an improvement
with probability no less than 1 − α, the cooling schedule maintains the linear in com-
plexity property for the expected number of sample points required by AS to solve
this class of global optimization problems. Some numerical results demonstrate an
effective implementation of the theoretical adaptive cooling schedule.

Acknowledgements This research was supported in part by the National Science Foundation under
grants DMI-9820744, DMI-9820878, DMI-0244286 and DMI-0244291; the Department of Defense Re-
search & Engineering (DDR&E) Multidisciplinary University Research Initiative (MURI) on “Low
Energy Electronics Design for Mobile Platforms” and managed by the Army Research Office (ARO)
under grant ARO DAAH04-96-1-0377; and by the Department of Defense Augmentation Awards for
Science and Engineering Research Training (ASSERT) on “Optimization Algorithms for Low Power
Mobile Platforms” and managed by the Army Research Office under grant ARO DAAG55-98-1-0155.

Appendix A

The following lemma is important for proving the results of Theorems 1, 4 and
Lemma 3.

Lemma 4 For all a, b ∈ � such that b > a and b > 0, if c ≥ 0, then

a + c
b + c

≥ a
b

.

Appendix B

Proof of Theorem 2

Proof We first prove the result for continuous case, i.e.,

πh,Tk(Sh(Xk)) ≥
∫

Bθk
eh(x)/Tk dx

∫
Bρ

eh(x)/Tk dx
.

Recall that

πh,Tk(Sh(Xk)) =
∫

Sh(Xk)
eh(x)/Tk dx

∫
S eh(x)/Tk dx

.

Therefore proving Theorem 2 is equivalent to proving
∫

Sh(Xk)
eh(x)/Tk dx

∫
Bθk

eh(x)/Tk dx
≥

∫
S eh(x)/Tk dx

∫
Bρ

eh(x)/Tk dx
. (17)

First we will prove that

vn
(
Bρ \ Bθk

)

vn
(
S \ Sh(Xk)

) ≥ vn
(
Bθk

)

vn
(
Sh(Xk)

) , (18)

where vn(·) is the n-dimensional volume of a set. The inequality (18) will be used to
prove (17). According to the argument given in [25, p 335], we have,

vn
(
Sh(Xk)

)

vn (S)
≥ vn

(
Bθk

)

vn
(
Bρ

) ,

356 J Glob Optim (2007) 38:333–365

which is equivalent to

vn
(
Bρ

)

vn
(
Bθk

) − 1 ≥ vn (S)

vn
(
Sh(Xk)

) − 1

and considering the fact that Bθk ⊆ Bρ and Sh(Xk) ⊆ S, we have

vn
(
Bρ \ Bθk

)

vn
(
Bθk

) ≥ vn
(
S \ Sh(Xk)

)

vn
(
Sh(Xk)

) ,

hence,

vn
(
Bρ \ Bθk

)

vn
(
S \ Sh(Xk)

) ≥ vn
(
Bθk

)

vn
(
Sh(Xk)

) . (19)

Now consider the left-hand side of (17). We have,
∫

Sh(Xk)
eh(x)/Tk dx

∫
Bθk

eh(x)/Tk dx
=

(∫
Sh(Xk)

eh(x)/Tk dx
) (∫

Sh(Xk)
eh(x)/Tk dx + ∫

S\Sh(Xk)
ef (Xk)/Tk dx

)

(∫
Bθk

eh(x)/Tk dx
) (∫

Sh(Xk)
eh(x)/Tk dx + ∫

S\Sh(Xk)
ef (Xk)/Tk dx

)

=
∫

Sh(Xk)
eh(x)/Tk dx + ∫

S\Sh(Xk)
ef (Xk)/Tk dx

∫
Bθk

eh(x)/Tk dx +
∫

Bθk
eh(x)/Tk dx

∫
Sh(Xk)

eh(x)/Tk dx
vn

(
S \ Sh(Xk)

)
ef (Xk)/Tk

.

According to the fact that Sh(Xk) ⊆ Bθk and applying Lemma 4.1 given in [23] with

Tk < T∞, we have

∫
Sh(Xk)

eh(x)/Tk dx
∫

Bθk
eh(x)/Tk dx

≥ vn(Sh(Xk))

vn(Bθk)
. Therefore,

∫
Sh(Xk)

eh(x)/Tk dx
∫

Bθk
eh(x)/Tk dx

≥
∫

Sh(Xk)
eh(x)/Tk dx + ∫

S\Sh(Xk)
ef (Xk)/Tk dx

∫
Bθk

eh(x)/Tk dx + vn

(
Bθk

)

vn

(
Sh(Xk)

) vn
(
S \ Sh(Xk)

)
ef (Xk)/Tk

and because of the fact that
vn

(
Bρ\Bθk

)

vn

(
S\Sh(Xk)

) ≥ vn

(
Bθk

)

vn

(
Sh(Xk)

) in inequality (19), we have

∫
Sh(Xk)

eh(x)/Tk dx
∫

Bθk
eh(x)/Tk dx

≥
∫

Sh(Xk)
eh(x)/Tk dx + ∫

S\Sh(Xk)
ef (Xk)/Tk dx

∫
Bθk

eh(x)/Tk dx + vn

(
Bρ\Bθk

)

vn

(
S\Sh(Xk)

) vn
(
S \ Sh(Xk)

)
ef (Xk)/Tk

=
∫

Sh(Xk)
eh(x)/Tk dx + ∫

S\Sh(Xk)
ef (Xk)/Tk dx

∫
Bθk

eh(x)/Tk dx + vn
(
Bρ \ Bθk

)
ef (Xk)/Tk

=
∫

Sh(Xk)
eh(x)/Tk dx + ∫

S\Sh(Xk)
ef (Xk)/Tk dx

∫
Bθk

eh(x)/Tk dx + ∫
Bρ\Bθk

ef (Xk)/Tk dx

=
∫

S eh(x)/Tk dx
∫

Bρ
eh(x)/Tk dx

.

J Glob Optim (2007) 38:333–365 357

Hence

πh,Tk(Sh(Xk)) =
∫

Sh(Xk)
eh(x)/Tk dx

∫
S eh(x)/Tk dx

≥
∫

Bθk
eh(x)/Tk dx

∫
Bρ

eh(x)/Tk dx
.

Next, we prove the result for discrete case, i.e.,

π̃h̃,T̃k
(S̃h̃(X̃k)

) ≥
∑

x̃∈(B̃
θ̃k

∩Zn)
eh̃(x̃)/T̃k

∑
x̃∈(B̃ρ̃∩Zn)

eh̃(x̃)/T̃k
. (20)

To prove the result, we first prove that

|S̃h̃(X̃k)
|

|S̃| ≥ |B̃θ̃k
∩ Zn|

|B̃ρ̃ ∩ Zn| . (21)

And then given the inequality (21), inequality (20) can be proved following the same
procedure used for the continuous case.

Let B̃ be a continuous set composed of the union of hypercubes surrounding all
integer points in S̃, and let B̃h̃(X̃k)

be the continuous set composed of the union of

hypercubes surrounding all integer points in S̃h̃(X̃k)
, i.e.,

B̃ = {x ∈ �n : Round(x) ∈ S̃}
B̃h̃(X̃k)

= {x ∈ �n : Round(x) ∈ S̃h̃(X̃k)
}.

Since we assume that S̃ is a discrete region over a hyperrectangle, according to the
definition of h̃, the improving set S̃h̃(X̃k)

is also a discrete hyperrectangular region.
Therefore,

|S̃h̃(X̃k)
|

|S̃| =
vn(B̃h̃(X̃k)

)

vn(B̃)
.

Now consider the four continuous sets, B̃, B̃h̃(X̃k)
, B̃θ̃k

, and B̃ρ̃ . We know that B̃ is a

convex set, B̃h̃(X̃k)
∈ B̃, B̃θ̃k

and B̃ρ̃ are hyperrectangles with center x̃∗, and B̃h̃(X̃k)
⊆

B̃θ̃k
, B̃ ⊆ B̃ρ̃ , and B̃θ̃k

⊆ B̃ρ̃ . According to the argument given in [25, p 335], we have,

vn(B̃h̃(X̃k)
)

vn(B̃)
≥ vn(B̃θ̃k

)

vn(B̃ρ̃)

and

vn(B̃θ̃k
)

vn(B̃ρ̃)
= |B̃θ̃k

∩ Zn|
|B̃ρ̃ ∩ Zn| ,

because B̃θ̃k
and B̃ρ̃ are defined such that the volume of each set equals the number

of discrete points contained in the set. Therefore,

|S̃h̃(X̃k)
|

|S̃| ≥ |B̃θ̃k
∩ Zn|

|B̃ρ̃ ∩ Zn| .

358 J Glob Optim (2007) 38:333–365

We have now proved Eq. 21. Following the same procedure used for the continuous
case we could further prove the desired result for the discrete case in Theorem 2. 	

Appendix C

This appendix contains a lemma used in proof of Theorem 4. Based on the definition
of h̃(x), the following lemma holds.

Lemma 5 Given the current record value X̃k, one has,

if � f̃ ∗−f (X̃k)

K̃
� < 1,

∑

x̃∈(B̃
θ̃k

∩Zn)

eh̃(x̃)/T̃k = ef̃ ∗/T̃k ,

otherwise,
∑

x̃∈(B̃
θ̃k

∩Zn)

eh̃(x̃)/T̃k ≥
∫ δ̃k

0
e(f̂ ∗−uK̃)/T̃k 2n · (2u)n−1du,

where f̂ ∗ = f̃ ∗ − 0.5K̃ and δ̃k = f̂ ∗−f (X̃k)

K̃
.

Proof As defined in Theorem 2, the set (B̃θ̃k
∩ Zn) is an n-dimensional hypercube

with center at x̃∗ and the length of each side is 2(f̃ ∗ − f̃ (X̃k))/K̃, i.e.,

B̃θ̃k
∩ Zn = {x̃ ∈ Zn : max

i=1,...,n
(|x̃i − x̃∗

i |) ≤ (f̃ ∗ − f̃ (X̃k))/K̃} (22)

and because x̃∗ must also be integer,

B̃θ̃k
∩ Zn = {x̃ ∈ Zn : max

i=1,...,n
(|x̃i − x̃∗

i |) ≤ �f̃ ∗ − f̃ (X̃k))/K̃�}.

Obviously, if �f̃ ∗−f̃ (X̃k))/K̃� < 1, there is only one integer point in B̃θ̃k
. Hence one has

∑

x̃∈B̃
θ̃k

∩Zn

eh̃(x̃)/T̃k = ef̃ ∗/T̃k .

For �f̃ ∗ − f̃ (X̃k))/K̃� ≥ 1, let m = �f̃ ∗ − f̃ (X̃k))/K̃�, and for a given j ∈ {1, . . . , m},
define Sj, a subset of B̃θ̃k

∩ Zn, as follows

Sj = {x̃ ∈ Zn : max
i=1,...,n

(|x̃i − x̃∗
i |) = j},

i.e., Sj is a collection of lattice points contained on the surface of the box [x̃∗
1 − j, x̃∗

1 +
j] × · · · × [x̃∗

n − j, x̃∗
n + j]. According to the definition of h̃, one has h̃(x̃) = f̃ ∗ − jK̃ for

all x̃ ∈ Sj. Therefore

∑

x̃∈B̃
θ̃k

∩Zn

eh̃(x̃)/T̃k = ef̃ ∗/T̃k +
m∑

j=1

(
|Sj|e(f̃ ∗−jK̃)/T̃k

)
, (23)

where |Sj| represents the number of lattice points contained in the set Sj.
To calculate |Sj|, we first define the rounding region of lattice point. Let the box

Bx̃ = [x̃1 − 0.5, x̃1 + 0.5] × · · · × [x̃n − 0.5, x̃n + 0.5] denote the rounding region of the

J Glob Optim (2007) 38:333–365 359

lattice point x̃, i.e., Bx̃ is an n-dimensional hypercube of unit length with x̃ being the
center of the hypercube. Since vn(Bx̃) = 1, one has

|Sj| =
∑

x̃∈Sj

vn(Bx̃) = vn(∪x̃∈Sj Bx̃),

∪x̃∈Sj Bx̃ = {x̃ ∈ �n : j − 0.5 ≤ max
i=1,...,n

(|x̃i − x̃∗
i |) ≤ j + 0.5}.

Now considering two boxes BL = [x̃∗
1−j+0.5, x̃∗

1+j−0.5]×· · ·×[x̃∗
n−j+0.5, x̃∗

n+j−0.5]
and BU = [x̃∗

1 − j − 0.5, x̃∗
1 + j + 0.5] × · · · × [x̃∗

n − j − 0.5, x̃∗
n + j + 0.5], one has

vn(∪x̃∈Sj Bx̃) = vn(BU \ BL) = vn(BU) − vn(BL) = (2j + 1)n − (2j − 1)n,

where the second equality follows from the fact BL ⊂ BU . Hence

|Sj| = (2j + 1)n − (2j − 1)n. (24)

Thus, by applying Eq. 24 to Eq. 23, we get that

∑

x̃∈B̃
θ̃k

∩Zn

eh̃(x̃)/T̃k = ef̃ ∗/T̃k +
m∑

j=1

(
(2j + 1)n − (2j − 1)n)

e(f̃ ∗−jK̃)/T̃k .

Considering that
∫ j+0.5

j−0.5
e(f̃ ∗−jK̃)/T̃k · 2n · (2u)n−1du = e(f̃ ∗−jK̃)/T̃k

∫ j+0.5

j−0.5
d(2u)n

= (
(2j + 1)n − (2j − 1)n)

e(f̃ ∗−jK̃)/T̃k

and because �f̃ ∗ − f̃ (X̃k)/K̃� ≥ 1, one has

∑

x̃∈B̃
θ̃k

∩Zn

eh̃(x̃)/T̃k = ef̃ ∗/T̃k +
m∑

j=1

(∫ j+0.5

j−0.5
e(f̃ ∗−jK̃)/T̃k · 2n · (2u)n−1du

)

and because f̃ ∗ − jK̃ ≥ f̃ ∗ − (u + 0.5)K̃ = f̂ ∗ − uK̃ for all u ∈ [j − 0.5, j + 0.5] and
where f̂ ∗ = f̃ ∗ − 0.5K̃, one has

≥ ef̃ ∗/T̃k +
m∑

j=1

(∫ j+0.5

j−0.5
e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du

)

=
∫ 0.5

0
ef̃ ∗/T̃k · 2n · (2u)n−1du +

∫ m+0.5

0.5
e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du

and apply the fact that f̃ ∗ > f̃ ∗ − (u + 0.5)K̃ = f̂ ∗ − uK̃ for all u ∈ [0, 0.5], one has

>

∫ 0.5

0
e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du +

∫ m+0.5

0.5
e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du

=
∫ m+0.5

0
e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du

360 J Glob Optim (2007) 38:333–365

and since m + 0.5 = � f̃ ∗−f̃ (X̃k)

K̃
� + 0.5 ≥ f̃ ∗−f̃ (X̃k)

K̃
− 1 + 0.5, one has

≥
∫ f̃∗−f̃ (X̃k)

K̃
−0.5

0
e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du

and setting δ̃k = f̂ ∗−f̃ (X̃k)

K̃
= f̃ ∗−f̃ (X̃k)

K̃
− 0.5, yields the result,

≥
∫ δ̃k

0
e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du.

	

Appendix D

Proof of Lemma 1

Proof We prove the lemma by analyzing the shape of the function pM(z). According
to the definition, z is a one-dimensional positive variable. It is easy to prove that
limz→0 pM(z) = 0. Next let us look at the limit of pM(z) as z goes to infinity,

lim
z→∞ pM(z) = (n − 1)! − lim

z→∞

n−1∑

i=0

(n − 1)!
i!

zi

ez − lim
z→∞ Mzn

ez .

Because zi

ez → 0 as z → ∞, for all i, we can see that

lim
z→∞ pM(z) = (n − 1)!.

Now consider the derivative of pM(z),

p′
M(z) = d p(z)

d z
= (1 − nM)zn−1e−z + Mzne−z.

If nM ≤ 1, for z positive, one has p′
M(z) > 0. In this case, we have,

(1) limz→0 pM(z) = 0,
(2) limz→∞ pM(z) = (n − 1)!
(3) p′

M(z) > 0,

which implies that the function pM(z) is monotonically increasing and concave as
depicted in Fig. (1a). Therefore the value of pM(z) is positive for z > 0.

On the other hand, if nM > 1, i.e., nM − 1 > 0, we have,

p′
M(z)

⎧
⎨

⎩

< 0 if 0 < z < (nM − 1)/M,
= 0 if z = (nM − 1)/M,
> 0 if z > (nM − 1)/M.

According to the property of p′
M(z) for the case nM > 1, and the fact that limz→0

pM(z) = 0 and limz→∞ pM(z) = (n − 1)! > 0, one can draw the function shape of
pM(z), as shown in Fig. (1b). Therefore, for nM > 1, the equation pM(z) = 0 with
z > 0 has a unique solution z∗.

The lower bound of z∗, i.e. z∗ ≥ nM−1
M , is immediate from the fact that limz→0

pM(z) = 0, limz→∞ pM(z) = (n − 1)! > 0 and the property of p′
M(z) = 0 at

z = (nM − 1)/M. 	

J Glob Optim (2007) 38:333–365 361

Appendix E

Proof of Lemma 2

Proof According to Theorem 3, solving for T∗
k in

∫
Bθk

eh(x)/Tk dx
∫

Bρ
eh(x)/Tk dx

= 1 − α is equivalent

to solving for z∗
k in pMk(z

∗
k) = 0 and setting T∗

k = (f ∗ − f (Xk))/z∗
k. Therefore, to prove

that Lk/(1 − ε) is an upper bound on z∗
k, we prove an associated lower bound on T∗

k .
To establish the lower bound on T∗

k , for 0 < ε < 1, we define a function g : Bρ → � by

g(x) =
{

f ∗ − ε(f ∗ − f (Xk)), if x ∈ Bε̂k
,

f (Xk), if x ∈ Bρ \ Bε̂k
,

where Bε̂k
= {x ∈ Bρ : ‖x − x∗‖ < ε̂k = ε(f ∗ − f (Xk))/K}. Then h(x) ≥ g(x) on Bθk ,

but h(x) = g(x) on Bρ \ Bθk . Also Bε̂k
⊆ Bθk . Following the same arguments in the

proof of Theorem 1, one can show that
∫

Bθk
eh(x)/Tk dx

∫
Bρ

eh(x)/Tk dx
≥

∫
Bε̂k

eg(x)/Tk dx
∫

Bρ
eg(x)/Tk dx

.

Now consider

∫
Bε̂k

eg(x)/Tk dx
∫

Bρ
eg(x)/Tk dx

, we have

∫
Bε̂k

eg(x)/Tk dx
∫

Bρ
eg(x)/Tk dx

=
∫

Bε̂k
e(f ∗−ε(f ∗−f (Xk)))/Tk dx

∫
Bρ\Bε̂k

ef (Xk)/Tk dx + ∫
Bε̂k

e(f ∗−ε(f ∗−f (Xk)))/Tk dx

= vn(Bε̂k
) · e(f ∗−ε(f ∗−f (Xk)))/Tk

(vn(Bρ) − vn(Bε̂k
)) · ef (Xk)/Tk + vn(Bε̂k

) · e(f ∗−ε(f ∗−f (Xk)))/Tk
.

After algebraic manipulations, it can be seen that if we let

Tl = (1 − ε)(f ∗ − f (Xk))

Lk
,

where

Lk = ln

(
1 − α

α
· vn(Bρ) − vn(Bε̂k

)

vn(Bε̂k
)

)

.

then Tl satisfies
∫

Bθk
eh(x)/Tl

dx
∫

Bρ
eh(x)/Tl dx

≥
∫

Bε̂k
eg(x)/Tl

dx
∫

Bρ
eg(x)/Tl dx

= 1 − α.

Since T∗
k is the solution to

∫
Bθk

eh(x)/Tk dx
∫

Bρ
eh(x)/Tk dx

= 1 − α, and we have

∫
Bθk

eh(x)/Tl
dx

∫
Bρ

eh(x)/Tl dx
≥

∫
Bθk

eh(x)/T∗
k dx

∫
Bρ

eh(x)/T∗
k dx

,

362 J Glob Optim (2007) 38:333–365

we know

Tl ≤ T∗
k

(also see [19, Proposition 3.9]). Thus Tl is a lower bound on T∗
k , and equivalently, Lk

1−ε
is an upper bound on z∗

k. 	

Proof of Lemma 3

Proof According to Theorem 4, solving for z̃∗
k in pM̃k

(z̃k) = 0 is equivalent to solving

for T̃∗
k in the equation

∫ δ̃k
0 e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du

∫ δ̃k
0 e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du +

(
|B̃ρ̃ ∩ Zn| − (2δ̃k)n

)
ef̃ (X̃k)/T̃k

= 1 − α (25)

and setting z̃∗
k = (f̃ ∗ − f̃ (X̃k))/T̃∗

k , where δ̃k = f̂ ∗−f̃ (X̃k)

K̃
. Therefore, to prove that

L̃k/(1 − ε) is an upper bound on z̃∗
k, we can equivalently prove an associated lower

bound on T̃∗
k .

To establish the lower bound on T̃∗
k , we first define a function ĥ(x) and sets Ŝ and

G̃ so we can write Eq. 25 as

∫
G̃ eĥ(x)/T̃k dx

∫
Ŝ eĥ(x)/T̃k dx

=
∫ δ̃k

0 e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du
∫ δ̃k

0 e(f̂ ∗−uK̃)/T̃k · 2n · (2u)n−1du +
(
|B̃ρ̃ ∩ Zn| − (2δ̃k)n

)
ef̃ (X̃k)/T̃k

= 1 − α

where Ŝ = {x ∈ �n : Round(x) ∈ (B̃ρ̃ ∩ Zn)}, G̃ = {x ∈ Ŝ : maxi=1,...,n(|xi − x̃∗
i |) ≤

(f̂ ∗ − f̃ (X̃k))/K̃} and

ĥ(x) =
{

f̂ ∗ − K̃ maxi=1,...,n(|xi − x̃∗
i |), if x ∈ G̃,

f̃ (X̃k), if x ∈ Ŝ \ G̃.

For 0 < ε < 1, we now define a set G̃ε̂ and a function g̃(x) as

G̃ε̂ = {x ∈ Ŝ : max
i=1,...,n

(|xi − x̃∗
i |) ≤ ε̂ = ε(f̂ ∗ − f̃ (X̃k))/K̃}

g̃(x) =
{

f̂ ∗ − ε(f̂ ∗ − f̃ (X̃k)), if x ∈ G̃ε̂,
f̃ (X̃k), if x ∈ Ŝ \ G̃ε̂,

so that

∫
G̃ eĥ(x)/T̃k dx

∫
Ŝ eĥ(x)/T̃k dx

≥
∫

G̃ε̂
eg̃(x)/T̃k dx

∫
Ŝ eg̃(x)/T̃k dx

.

J Glob Optim (2007) 38:333–365 363

This is true because G̃ε̂ ⊆ G̃ and ĥ(x) ≥ g̃(x) for x ∈ G̃, and ĥ(x) = g̃(x) for x ∈ Ŝ \ G̃.
Now we have

∫
G̃ε̂

eg̃(x)/T̃k dx
∫

Ŝ eg̃(x)/T̃k dx
=

∫
G̃ε̂

e(f̂ ∗−ε(f̂ ∗−f̃ (X̃k)))/T̃k dx
∫

Ŝ\G̃ε̂
ef̃ (X̃k)/T̃k dx + ∫

G̃ε̂
e(f̂ ∗−ε(f̂ ∗−f̃ (X̃k)))/T̃k dx

= vn(G̃ε̂) · e(f̂ ∗−ε(f̂ ∗−f̃ (X̃k)))/T̃k

(vn(Ŝ) − vn(G̃ε̂)) · ef̃ (X̃k)/T̃k + vn(G̃ε̂) · e(f̂ ∗−ε(f̂ ∗−f̃ (X̃k)))/T̃k
,

where vn(G̃ε̂) = (2ε · δ̃k)n and vn(Ŝ) = |B̃ρ̃ ∩Zn| = |S̃|. After algebraic manipulations,
it can be seen that if we let

T̃l = (1 − ε)(f̂ ∗ − f̃ (X̃k))

L̃k
,

where

L̃k = ln

(
1 − α

α
· |S̃| − (2εδ̃k)n

(2εδ̃k)n

)

,

then T̃l satisfies
∫

G̃ eĥ(x)/T̃l
dx

∫
Ŝ eĥ(x)/T̃l dx

≥
∫

G̃ε̂
eg̃(x)/T̃l

dx
∫

Ŝ eg̃(x)/T̃l dx
= 1 − α.

Since T̃∗
k is the solution to

∫
G̃ eĥ(x)/T̃k dx

∫
Ŝ eĥ(x)/T̃k dx

= 1 − α, and we have

∫
G̃ eĥ(x)/T̃l

dx
∫

Ŝ eĥ(x)/T̃l dx
≥

∫
G̃ eĥ(x)/T̃∗

k dx
∫

Ŝ eĥ(x)/T̃∗
k dx

,

we know

T̃l ≤ T̃∗
k

(also see [19, Proposition 3.9]). Thus T̃l is a lower bound on T̃∗
k , and equivalently, L̃k

1−ε
is an upper bound on z̃∗

k. 	

Appendix F

F.1 Test problem 1: six-dimensional Hartmann problem over a continuous domain [19]

f (x) =
4∑

i=1

ci exp

⎛

⎝−
6∑

j=1

aij

(
1
j

xj − pij

)2
⎞

⎠ ,

s.t 0 ≤ xj ≤ j, for j = 1, . . . , 6,

364 J Glob Optim (2007) 38:333–365

where c1 = 1, c2 = 1.2, c3 = 3, c4 = 3.2,
⎛

⎜
⎜
⎝

a11 = 10 a12 = 3 a13 = 17 a14 = 3.5 a15 = 1.7 a16 = 8
a21 = 0.05 a22 = 10 a23 = 17 a24 = 0.1 a25 = 8 a16 = 14

a31 = 3 a32 = 3.5 a33 = 1.7 a34 = 10 a35 = 17 a36 = 8
a41 = 17 a42 = 8 a43 = 0.05 a44 = 10 a45 = 0.1 a46 = 14

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

p11 = 0.1312 p12 = 0.1696 p13 = 0.5569 p14 = 0.0124 p15 = 0.8283 p16 = 0.5886
p21 = 0.2329 p22 = 0.4135 p23 = 0.8307 p24 = 0.3736 p25 = 0.1004 p16 = 0.9991
p31 = 0.2348 p32 = 0.1451 p33 = 0.3522 p34 = 0.2883 p35 = 0.3047 p36 = 0.6650
p41 = 0.4047 p42 = 0.8828 p43 = 0.8732 p44 = 0.5743 p45 = 0.1091 p46 = 0.0381

⎞

⎟
⎟
⎠ .

The global optimum f ∗ = 3.32 was determined numerically, and an estimated
upper bound of the Lipschitz constant is K ≤ 1320.52. The stopping rule is: either
reach maximal number of function evaluations (1,500) or find a function value f such
that (f ∗ − f)/f∗ <= 0.01.

F.2 Test problem 2: six-dimensional Hartmann problem
over a discrete domain (modified directly from the continuous problem)

f (x) =
4∑

i=1

ci exp

⎛

⎝−
6∑

j=1

aij

(
1

10j
xj − pij

)2
⎞

⎠ ,

s.t 0 ≤ xj ≤ 10j for j = 1, . . . , 6,

where ci, aij, and pij are the same as in the continuous problem. The global optimum
f ∗ = 0.166 was determined numerically, and an estimated upper bound of the Lips-
chitz constant is K̃ ≤ 1320.52. The stopping rule is: either reach the maximal number
of function evaluations (30,000) or find f ∗.

F.3 Test problems 3 and 4:
ten-dimensional Sinusoidal function over continuous and discrete domains [24]

Minimize f (x) = −2.5
10∏

i=1

sin(xi) −
10∏

i=1

sin(5(xi))

s.t (over a continuous domain) 0 ≤ xi ≤ 180 for i = 1, . . . , 10,

or s.t (over a discrete domain) 0 ≤ xi ≤ 180 and xi integer valued

for i = 1, . . . , 10.

The global optimum is f ∗ = 3.5 for both the continuous and discrete problems,
an estimated upper bound of the Lipschitz constant for the continuous problem is
K ≤ 23.72, and an estimated upper bound of the Lipschitz constant for the discrete
problem is K̃ ≤ 7. The stopping rule for the continuous problem is: either reach the
maximal number of function evaluations (50,000) or find a function value f such that
(f ∗ − f)/f ∗ ≤ 0.01. The stopping rule for the discrete problem is: either reach the
maximal number of function evaluations (50,000) or find f ∗.

J Glob Optim (2007) 38:333–365 365

References

1. Aarts, E.H.L., Van Laarhoven, P.J.M.: Simulated annealing: an introduction. Statistica Neerlan-
dica 43, 31–52 (1989)

2. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several global optimi-
zation algorithms on selected benchmark test problems. J. Glob. Optim. 31(4), 635–672 (2005)

3. Alrefaei, M.H., Andradóttir, S.: A simulated annealing algorithm with constant temperature for
discrete stochastic optimization. Manag. Sci. 45(5), 748–764 (1999)

4. Bélisle, C.J.P.: Convergence theorems for a class of simulated annealing algorithms on Rn. J.
Appl. Probab. 29, 885–895 (1992)

5. Bohachevsky, I.O., Johnson, M.E., Stein, M.L.: Generalized simulated annealing for function
optimization. Technometrics 28, 209–217 (1986)

6. Cohn, H., Fielding, M.: Simulated annealing: searching for an optimal temperature schedule.
SIAM J. Optim. 9(3), 779–802 (1999)

7. Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal functions of continuous
variables with the “simulated annealing” algorithm. ACM T. Math. Software 13, 262–280 (1987)

8. Dekker, A., Aarts, E.H.L.: Global optimization and simulated annealing. Math. Program. 50,
367–393 (1991)

9. Fielding, M.: Simulated annealing with an optimal fixed temperature. SIAM J. Optim. 11(2),
289–307 (2000)

10. Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13, 311–329 (1988)
11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220,

671–680 (1983)
12. Locatelli, M.: Simulated annealing algorithms for continuous global optimization: convergence

conditions. J. Optim. Theory Appl. 104, 121–133 (2000)
13. Locatelli, M.: Convergence of a simulated annealing algorithm for continuous global optimization.

J. Glob. Optim. 18, 219–234 (2000)
14. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state

calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)
15. Pincus, M.: A closed form solution for certain programming problems. Oper. Res. 16, 690–694

(1968)
16. Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms,

Implementations and Applications). Kluwer Academic Publishers, Dordrecht/Boston/London
(1996)

17. Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, New York (1981)
18. Romeijn, H.E., Smith, R.L.: Simulated annealing for constrained global optimization. J. Glob.

Optim. 5, 101–126 (1994)
19. Romeijn, H.E., Smith, R.L.: Simulated annealing and adaptive search in global optimization.

Probab. Eng. Inform. Sci. 8, 571–590 (1994)
20. Shen, Y., Zabinsky, Z.B., Smith, R.L.: Annealing adaptive search with a Markov chain Monte

Carlo sampler for global optimization. Technical Report, Industrial Engineering, University of
Washington, Seattle, WA (2005)

21. Shen, Y.: Annealing adaptive search with hit-and-run sampling methods for global optimization.
PhD dissertation, University of Washington (2005)

22. Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over
bounded region. Oper. Res. 32, 1296–1308 (1984)

23. Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization. Kluwer Academic
Publishers, Boston/Dordrecht/London (2003)

24. Zabinsky, Z.B., Graesser, D.L., Tuttle, M.E., Kim, G.I.: Global Optimization of Composite
Laminate Using Improving Hit-and-Run. In: Floudas, C.A., Pardalos, P.M. (eds.) Recent
Advances in Global Optimization. Princeton University Press, Princeton, NJ (1992)

25. Zabinsky, Z.B., Smith, R.L.: Pure adaptive search in global optimization. Math. Program. 53,
323–338 (1992)

	An analytically derived cooling schedule for simulated annealing
	Abstract
	Introduction
	Adaptive search for continuous and discrete problems
	The adaptive search algorithm
	Characterization of the adaptive search cooling schedule
	An analytical cooling schedule
	Worst case functions
	Calculation of the adaptive search cooling schedule
	Cooling schedule strategy
	Cooling Schedule Strategy for (P1)
	Cooling Schedule Strategy for (P2)
	Numerical results
	Summary and conclusion
	Acknowledgements
	Test problem 1: six-dimensional Hartmann problem over a continuous domain [19]
	Test problem 2: six-dimensional Hartmann problem over a discrete domain (modified directly from the continuous problem)
	Test problems 3 and 4: ten-dimensional Sinusoidal function over continuous and discrete domains [24]
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

